
© 2024 Arthur Hoskey. All rights reserved. 

BCS 371 Lab – Compose LifeCycle 

Overview 

In this lab you will write an app that shows how the compose lifecycle works. 

Create a project 

Create a new Android application in Android Studio. Choose the Empty Activity type to create an empty 

activity that uses Jetpack Compose. 

Setup the Main Screen 

Create a Kotlin file named MainScreen.kt. Write the following composable functions: 

• CreateText(d: String) – Should create a Text composable. 

• CreateTextField() – Should create a TextField composable. Make sure to create a local variable 
to hold the TextField’s data (the variable should be declared with remember and 
mutableStateOf). 

• MainScreen(modifier: Modifier) – Should have a Column inside of it. The Column call should take 
the modifier as a parameter. Inside the body of the Column, it should call CreateText and 
CreateTextField to generate the UI (screenshot below). 

 
Update setContent inside of MainActivity.onCreate so that it calls MainScreen. The call should go inside 

the Scaffold. Here is the function call: 

MainScreen(modifier = Modifier.padding(innerPadding)) 

It should look like the following: 

 

Add lifecycle event handlers 

Add SideEffect composables to each function. Inside the SideEffect composable it should print a 

message to the logcat window. 



© 2024 Arthur Hoskey. All rights reserved. 

• CreateText - Inside SideEffect it should print a message to the logcat window. Use the following 

statement to print to the logcat window:  

println("CreateText - SideEffect executed") 

• CreateTextField - Inside SideEffect it should print a message to the logcat window. Use the 

following statement to print to the logcat window:  

println("CreateTextField - SideEffect executed") 

• MainScreen - Inside SideEffect it should print a message to the logcat window. Use the 

following statement to print to the logcat window:  

println("MainScreen - SideEffect executed") 

Note: Logcat Filter. Type in System.out as a filter in the logcat window to only see println messages 
 
Note: Clearing Logcat. You can clear the Logcat window messages by right-clicking inside the Logcat 
window and choosing Clear Logcat from the context menu. 
 

Run the App 

You should see the main screen appear when you run the app. You can make the logcat window visible 

by clicking on the Logcat icon at the bottom left of Android Studio. 

Now do the following: 

• Check the logcat window and search for the "SideEffect executed" message. There should be 

one "SideEffect executed" message for each function. Type in System.out as a filter in the logcat 

window to only see println messages. 

• Type characters into the name TextField. Typing in the TextField will change the value of the 

name variable which will cause the TextField’s state to change. Since the TextField’s state is 

changing, a recomposition will be triggered for that composable. This will cause the SideEffect to 

run in CreateTextField. You should see the "SideEffect executed" message for the TextField 

appear in the logcat for each keypress. You should not see "SideEffect executed" for the other 

functions. 

Add address 

Add a second Text and TextField to the UI. Do this by adding extra calls to CreateText and 

CreateTextField. It should look like the following: 

 



© 2024 Arthur Hoskey. All rights reserved. 

 

• Run the app and check the logcat output. 

• Initially when the app runs there should be two messages for CreateText, two messages for 

CreateTextField, and one message for MainScreen.  

• Now add text to both the name and address TextFields. There should be additional messages for 

CreateTextField but not for MainScreen and CreateText. 

Add a count to CreateTextField 

Update CreateTextField so that it keeps a count of the number of times it is called. 

• Create a local variable to hold the count. The variable should be declared with remember and 

mutableStateOf. Pass 0 into mutableStateOf. 

• Inside SideEffect and just before the call to println you should increment the count variable. 

• Append the count to the end of the println message. 

• Run the app and check the logcat output. 

• Initially when the app runs, the messages for CreateTextField should both show a count of 1. 

Each call to CreateTextField generates a separate count variable. 

• Now add text to both the name and address TextFields. There should be additional messages for 

CreateTextField which show new counts depending on which TextField is being updated. 

Add a LaunchedEffect 

Add LaunchedEffect composables to each function. Inside the LaunchedEffect composable it should 

print a message to the logcat window.  

• CreateText - Inside LaunchedEffect it should print a message to the logcat window. Use the 

following statement to print to the logcat window:  

println("CreateText - LaunchedEffect executed") 

• CreateTextField - Inside LaunchedEffect it should print a message to the logcat window. Use the 

following statement to print to the logcat window:  

println("CreateTextField - LaunchedEffect executed") 



© 2024 Arthur Hoskey. All rights reserved. 

• MainScreen - Inside LaunchedEffect it should print a message to the logcat window. Use the 

following statement to print to the logcat window:  

println("MainScreen - LaunchedEffect executed") 

Run the app. The LanuchedEffect messages should appear once for each function call. There should be a 

total of 5 LaunchedEffect messages. 

Rotate the device 

Run the app and do the following: 

• Check logcat message after typing in both TextFields a few times. The counts should be greater 

than 1. 

• Do a left rotate on the device (the emulator in this case).  

• Check the logcat messages. The UI is recreated from the beginning again because the left 

rotation causes a configuration change on the device. All functions should have LaunchedEffect 

called on them again. All CreateTextField counts should be reset to 1 again. Any text that was 

typed in the TextFields will be gone. 

Use rememberSaveable 

• Update each function variable to use rememberSaveable instead of remember. 

• Run the app and type in the TextFields (counts will be updated). Now do a left rotation. The 

counts will NOT be reset this time because all variables that use rememberSaveable will be 

saved through the configuration change caused by the left rotation. Any text typed in the 

TextFields should also be retained. 

 


